Understanding & Using Solar DC-AC Inverters – Part 2
- Author Yoni Levy
- Published October 11, 2010
- Word count 897
Understanding & Using Solar DC-AC Inverters – Part 2
Output regulation
We take for granted the fact that our mains power is very well regulated . so
you can plug almost any appliance into a standard point outlet, and it will
operate correctly. That.s because the electricity supplier has enormous generating
plants, with automatic regulation systems to keep the mains voltage and
frequency very close to constant, despite load variations of many megawatts.
Inevitably you can.t get this kind of performance from a much smaller electronic
inverter, connected to a modest battery or solar panel as the energy source.
However most modern inverters can provide reasonably good regulation for loads
of up to their rated capacity (given in watts) . assuming of course that they.re
running from a well-charged battery.
In this type of inverter it isn.t feasible to control the peak-to-peak output,
because this is largely fixed by the battery voltage and the transformer.s step-up
ratio. So in most cases the regulation is achieved in a different way: by varying
the width of the rectangular pulses, to control the .form factor. and hence the
RMS value of the output voltage.
This is called pulse width modulation (PWM), and is usually done by having a
feedback system which senses the inverter.s output voltage (or load current).
When this feedback senses that the load on the inverter.s output has increased,
the inverter.s control circuitry acts to increase the width of the pulses which turn
on the MOSFETs. So the MOSFETs turn on for longer each half-cycle,
automatically correcting the RMS value of the output to compensate for any
droop in peak-to-peak output.
The resulting regulation is usually capable of keeping the RMS value close to
constant, for loads up to the inverter.s full rated output power. However this
approach does have limitations, mainly because it can generally only increase the pulse width to a certain point. (In the extreme, the output becomes a square wave.) This may not be sufficient to allow the inverter to deliver enough RMS output voltage
in short-term overload or .surge. conditions. When many types of appliance are first turned on, for example, they draw a .startup. current which is many times greater than the current drawn when they.re running. This type of surge can overload the inverter, and its protection circuitry may .shut it down. To prevent damage to the transformer and MOSFETs.
Some types of inverter incorporate special .soft start. circuitry, to allow the inverter to cope with this type of short load current surge. The output voltage and power may drop, but at least the inverter keeps operating and allows the appliance to start up.
Even so, there are some appliances and tools that are simply not compatible with inverters, because of their tendency to draw an extremely high startup current.
Examples are refrigerators, freezers, air conditioners or any other appliance where a motor is driving a compressor or pump. As the motor in these appliances often has a very heavy load right at switch-on (with the compressor near .top dead centre.), it can need to draw a huge current simply in order to start rotating.
This type of appliance and tool should really be powered using a suitably rated engine-driven alternator, not a DC-AC inverter.
Voltage spikes
Another complication of the fairly high harmonic content in the output of
.modified sinewave. inverters is that appliances and tools with a fairly inductive
load impedance can develop fairly high voltage spikes due to inductive .back
EMF.. These spikes can be transformed back into the primary of the inverter.s
transformer, where they have the potential to damage the MOSFETs and their
driving circuitry.
The risk of damage is fairly small during the actual power pulses of each cycle,
because at these times one end of the primary is effectively earthed. Transformer
action thus prevents the .other. end from rising higher than about twice the
battery voltage.
However as you can see from Fig.2, there are times during every
cycle of operation when neither of the switching MOSFETs is conducting: the
.flats. between the rectangular pulses. It.s at these times that the spikes can
produce excessive voltage across the MOSFETs, and potentially cause damage.
It.s for this reason that many inverters have a pair of high-power zener diodes
connected across the MOSFETs, as shown in Fig.1.
The zeners conduct heavily as soon as the voltage rises excessively, protecting the MOSFETs from damage.
Another approach is to have high-power standard diodes connected from each
end of the primary to a large electrolytic capacitor, which becomes charged up to
twice the battery voltage. When the ends of the primary attempt to rise higher
than this voltage, the diodes conduct and allow the capacitor to absorb the spike
energy.
Thanks to this type of protection, most inverters are fairly tolerant of moderately
inductive loads. However they may not be able to cope with heavy loads that are
also strongly inductive . like heavy duty tools and machinery, or more than
one or two fluorescent lights.
Quite apart from the generation of voltage spikes, heavily inductive loads tend
to demand current which is strongly shifted in phase relative to the inverter.s
output voltage pulses. This makes it hard for the inverter to cope, because the
only energy available to the load between the pulses is that stored in the
transformer.
RunGreenPower.com will teach you how to build solar & wind power systems for
your home within a weekend.
Check It Now: Homemade Soalr Cells
Article source: https://articlebiz.comRate article
Article comments
There are no posted comments.
Related articles
- Why I’m Obsessed with Antique Armoires as Statement Home Bars
- Ranch Revival: Statement Doors & Artisanal Elegance
- Embracing the Sensuous Chaos of Vintage Carved Doors
- Southern Style Charm: Decorating with Hand-Carved Antique Armoires
- Vintage Revival: Eclectic Coffee Tables & Earthy Furniture
- Pattern Mixing with Soul: Anchoring Your Space with the Tree of Life Carved Door
- Of Textures, Tranquility, and Time: The Vintage Lattice Carved Lotus Door
- The Benefits of Regular Janitorial Cleaning for North Shore Offices
- The Ultimate Guide to “Extras Carte Funciara” in Romania
- The Color Soirée, Carved Doors and Bespoke Design That Radiate Soul
- Why More Canadian Homes Are Using Tile in Living Rooms and Beyond
- Bohemian Rhapsody at Home: How to Decorate Like a Rock 'n' Roll Mogul
- How to deter pest birds from your home and garden
- Platinum Heat and Air: Your Local HVAC Heroes in Minnesota
- Kitchen Countertops: Sintered Stone, Quartz, Marble, Granite,Kompacplus
- Design Focus: Bold Pantry Doors & Dramatic Powder Room Entrances That Elevate the Everyday
- Artistic Bohemian Farmhouse: Where Creativity Meets Rustic Calm
- Rooted in Whimsy: Maximalist Wall Paneling with Hand-Carved Doors
- Rooted & Refined: A Home Where Two Histories Meet
- A Personalized Aesthetic: Where Antiques Tell the Story of Your Home
- Moody Vibes Only: Statement Pieces
- Where Soul Meets Space: Curating with Character
- The Sky's the Limit: Aerial Roof Inspection Pros and Cons
- Enhance Your Home’s Exterior with Custom Gates
- The Antique Indian Door as an Artist’s Muse
- Majestic Portals: Styling Indian Palace Doors for Soulful Spaces
- 5 Best Tools to Manage Your Business
- Elevate Your Entryway with a Statement Wall: Carved Wood Panels
- How to Use Airconditioning to Create a Pet-Friendly Home
- Rooted in Heritage: The Rich Ranch Aesthetic with Antique Doors and Rustic Soul