The Ion Beam Enhanced Deposition Coating Process for Pharmaceutical Tooling
- Author Arnold H. Deutchman, Ph.d.
- Published July 13, 2010
- Word count 572
The Ion beam enhanced deposition (IBED) process is a new metal coating process that can be used to effectively coat tableting punches and dies with a variety of hard, wear and corrosion resistant coatings. IBED coating technology is ideal for use on tableting tooling and has two main advantages over conventional metal coating methods:
1.) IBED coatings can be applied at temperatures that do not exceed 150 degrees Fahrenheit, thus maintaining the original integrity of the tooling, including exact dimensions and bulk hardness.
2.) IBED coatings replicate the tooling's original surface finish exactly, thus eliminating the need for post-coating repolishing.
Unlike conventional electro- chrome plating or high-temperature vacuum coating processes, IBED is entirely a physical process (chrome plating and vacuum coating are chemical and thermal processes, respectively). Ion beam enhanced deposition processing combines the benefits of thermal diffusion processing and conventional coating technologies because the coating atoms first penetrate into the substrate to form a case layer in the surface, and then are grown out from this case layer as a thick coating. Driven in kinetically instead of thermally, IBED coatings are "ballistically bonded" to the substrate, thus forming a metallurgical bond that is much stronger than a mechanical or chemical bond.
The IBED coating process is implemented by the simultaneous bombardment of a growing coating with an independently controllable beam of energetic atomic particles. The growing coating is generated either by vacuum evaporation or ion beam sputtering. The independent beam of particles consists primarily of charged atoms (ions) extracted at high energy from a broad beam ion source. Beams of either inert species (Ne+, Ar+, or Kr+) or reactive species (N+ or O+) can be utilized for the process.
Because control of the ion beam is independent of the coating vapor flux, a high degree of control over coating nanostructure can be achieved. This allows optimization of coating properties such as adhesion and composition, and guarantees that the properties can be duplicated repeatedly. Essentially a line of sight process, sources of the reactant fluxes are located so that they simultaneously illuminate the components to be coated. The components are mounted to an angling, rotating platen assembly that is used to uniformly expose all surfaces of the components to both reactant fluxes. The entirely physical nature of the coating process allows temperatures to be held under 150 degrees Fahrenheit. This removes the possibility of deforming structural integrity and altering the precise dimensions critical to optimizing pharmaceutical tooling performance.
A variety of types of metallic and hard ceramic coatings can be deposited on the working surfaces of punches and dies. The metallic coatings include chromium and nickel, and the ceramic coatings include metallic nitrides like titanium nitride and chromium nitride. For most tableting applications the family of hard ceramics is the coating of choice. They are much harder and abrasion-resistant than nickel or even chrome plating, and provide a corrosion-resistant seal on all coated surfaces.
Because of the hardness and durability of the coatings, the wear and corrosion experienced during normal tableting operations does not degrade and roughen the tooling surface and the tableting tooling performs better and longer. If powders begin to stick because of physio-chemical adhesion, the coated surfaces can be cleaned with detergents, solvents, or mild abrasives without the risk of scratching or roughening the original surface finish. The use of IBED performance coatings offers an excellent way to preserve the critical surfaces of punches and dies thereby improving tableting efficiency and manufacturing productivity.
Dr. Deutchman is currently Chairman and Director of Research and Development at Beamalloy Technologies, LLC where he is directly involved with the research, development, and application of the Beamalloy patented IBED coating process. He is the author of numerous articles published in a variety of scientific and trade journals, holds numerous patents, and lectures widely on surface engineering.
Article source: https://articlebiz.comRate article
Article comments
There are no posted comments.
Related articles
- Exercises to Help Plantar Fasciitis in the Foot
- The Foundation of Health: How to Tell if You Need Arch Supports
- Invisalign vs. Braces: A Modern Smile Comparison
- Ginger: Nature’s Fiery Ally for Health and Vitality.
- Using Heel Lifts for Helping Foot Pain
- Exosome Analysis and RNA Sequencing: Revolutionizing Biomedical Research and Drug Development
- Current and potential treatments for IBD
- The Use of Electric Callus Removers: A Modern Approach to Foot Care
- Using Toe Straighteners to Help Foot Problems
- Use of podiatry felt to treat foot problems
- Diabetes and Limited Joint Mobility: Understanding the Connection
- Dealing with Metatarsalgia in the Foot
- The "Too Many Toes" Sign in a Gait Analysis
- The Use of Circulation Boosters
- Why is foot care so important for those with diabetes?
- How is clubfoot treated?
- Why You Should Buy Tofacent 5 mg: A Game-Changer for Your Health
- The History of Our Understanding of Diabetes
- Dealing with Foot Pain During Pregnancy
- The Origin of Policeman's Heel: Uncovering the Name's History
- Improving Foot Health with Toe Separator Socks
- The Pseudoscience of Reflexology: Fact or Fiction?
- Choosing the Right Wound Dressing: Foam, Hydrocolloid, and Alginate
- Partnering with Community Medical Services for Long-Term Health
- Telehealth and Behavior Health Services: What’s Changing in 2025
- What is Baxter's Neuropathy?
- Medical Uses of Duct Tape: Surprising Benefits
- Is Urine Therapy a Pseudoscience?
- The Painful Problem of Deep Calluses on the Bottom of Your Foot
- Dealing with Ingrown Toenails: Prevention and Treatment